

Introduction Hydrodynamic aspects play a significant role in the quality of the ship, dominant criteria in the hull form design are: • Resistance,; • powring performance; • Maneuvrability. CFD instruments used as a predictive tool for an accurate representation of reality Ship flow has been applied directly to full scale in order to sudy the free surface potential flow and viscous flow around the KCS hull

		Hydros	static calculaio	ons	
с		Full scale	KCS hull modelled in		
Н	main characteristics Volumetric displacement	KCS	Tribon-M3	difference	
Α	$\frac{V (m^3)}{hull wetted surface (m^2)}$	52030 9424	51751,73659 9506,86	0,5348134 -0,879244	%
Р	block coefficient C_B midship section coefficient C_M	0,6505 0,985	0,656 0.9841	-0,845503 0.0913706	%
T	longitudinal prismatic coefficient C _P	0,66040	0,6665	-0,922752	%
E					
R	The comparison of S data suggest a vertex	the hydr erv aood	ostatics Tribon re accuracy of the (esults with	the KC nstrume
2	nt, all the difference	es being	less than 1%		

	Resistance and propeller.				
с	AVEVA Tribon-M3 Initial design.	J 0.32	Kt Kq eta0 26 0.391 0.0620 0.327		
н		0.39 0.43 0.5	000.3620.05800.388550.3320.05370.447190.3000.04930.503	es pe	
Α		0.55 0.64 0.7	840.2680.04470.556480.2340.04000.605130.2000.03520.646		
Р		0.7 ⁴ 0.84 0.90	77 0.166 0.0303 0.677 42 0.131 0.0253 0.692 06 0.095 0.0203 0.678		
T	Blade Area Ratio 0.91	7 0.9 [°] 1.0	71 0.060 0.0153 0.608 35 0.025 0.0103 0.397		
Ε	Diameter	7.900	metres	04 05 05 07 08 09 10 Antarve/Cefficient-I	
R	Effective BAR	0.917	(0.917 min)	Austre Converting	
~ ~	Local Cavitation no Thrust load. coeff.	0.362 0.146	(0.146 max)	Figure 9. Open water characteristics of the propeller.	
2	Kt/J ^A 2 Adv. coeff. J	0.535			
	Torque coeff. Ka	0.0395			
	Open water eff.	<mark>0.610</mark>			

	Zig-Zag and spiral maneuvre						
С	AVEVA Tribon-M3 Initial design.						
	1ST OVERSHOOT ANGLE	<mark>6.50</mark>	DEG	STANDARD MANOEUVRE	MAXIMUM VAI	UES	KCS values
H	IST OVERSWING ANGLE	4.14	DEG		Advance (AD)	<451	3.35
	2ND OVERSHOOT ANCLE	7 20	DEC		Tactical		
	2ND OVERSWING ANGLE	4.91	DEG	TURNING CIRCLE	diameter (TD)	$\leq 5 L$	3.96
A		4.71	DLU			≤10° if L/v<10	
	3RD OVERSHOOT ANGLE	6.74	DEG			sec.	6.5
	3RD OVERSWING ANGLE	4.22	DEG			≤20° if L/v>30	
Ρ	4TH OVERSHOOT ANGLE	6.50	DEG		First overshoot	sec.	
	4TH OVERSWING ANGLE	4.43	DEG		angle (zigzag	≤ (5+0,5L/v)	
	hon to h	.	ana		10/10)	[degrees] if	
Τ	PERIOD	226.00	SEC			sec. <l th="" v<30<=""><th></th></l>	
	INITIAL TURNING TIME	44.00	SEC			sec.	
		44.00	DLC			Should not	
E	1ST TIME TO CHECK YAW	24.00	SEC		overshoot angle	exceed the first	
	IST LAG TIME	19.33	SEC		(zig-zag	angle by more	
					10°/10°)	than 15°	7.80
R	2ND TIME TO CHECK YAW	26.00	SEC		First overshoot		
	2ND LAG TIME	21.33	SEC	ZIG-ZAG MANOEUVRE	20°/20°)	≤25°	
	3PD TIME TO CHECK YAW	24.00	SEC	CRASH- STOP	The track reach	≤15 L	
2	3RD LAG TIME	19.33	SEC				
	SID LITO TIME	17.55	DLC				
	4TH TIME TO CHECK YAW	24.00	SEC	The man	euvring I	perform	ances
	4TH LAG TIME	19.33	SEC	of the KC	'S estief	the IM	○
					o satisi		0
	OVERSHOOT WIDTH OF PATH/LENGTH	0.69		criteria			

	Conclusions
С Н	The Holtrop and Mennen method from the Tribon initial design has been used for resistance calculations. And a B-Series Wageningen for the optimum propeller.
Α	The KCS KRISO container ship has good maneuvering properties referring to the IMO criteria.
P T	Potential flow analysis free surface around the KCS hull has been performed fusing SHIPFLOW Code or different sets of grids and for a range of speed [14 Knts – 26 Knts]
E R	Viscous flow analysis free surface around the KCS hull has been performed for coarse grid and for a range of speed [14 Knts – 24 Knts]
6	The accuracy of the resistance test results in small towing tanks as the one of the UGAL, which allow a model not exceeding 4m, should be verified, in this thesis it was verified referring to the results from the KRISO towing tank results and the numerical results.

